

SIMPLE PUBLIC KEY INFRASTRUCTURE PROTOCOL ANALYSIS AND

DESIGN

THESIS

Alexander G. Vidergar, 1Lt, USAF

AFIT/GCE/ENG/05-07

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government.

AFIT/GCE/ENG/05-07

SIMPLE PUBLIC KEY INFRASTRUCTURE PROTOCOL ANALYSIS AND DESIGN

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

Alexander G. Vidergar, BS

1Lt, USAF

March 2005

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

AFIT/GCE/ENG/05-07

SIMPLE PUBLIC KEY INFRASTRUCTURE PROTOCOL ANALYSIS AND DESIGN

Alexander G. Vidergar, BS

First Lieutenant, USAF

Approved:

/signed/
Maj Robert P. Graham, Jr., Ph. D.(Chairman)

 10 Mar 05
Date

/signed/
Dr. Henry Potoczny (Member)

 10 Mar 05
Date

/signed/
Dr. Richard Raines (Member)

 10 Mar 05
date

Acknowledgments

I would like to thank my advisor for providing much needed guidance and

support; my friends and family both in state and beyond for providing a sound link in the

magnetic chain of humanity; the Krebs cycle, without it none of this would have been

possible; and finally, the people in the corner for making time for my appointments.

Alex Vidergar

iv

Table of Contents

 Page

Acknowledgments.. iv

List of Figures ... vii

List of Tables ... viii

Abstract .. ix

I. Introduction..1

II. Public Key Cryptography and Protocol Analysis ..3

2.1 Security & Cryptography...3

2.2 Public Key Infrastructure...6
2.2.1 X.509...7
2.2.2 SPKI/SDSI. ...9

2.3 Protocol Analysis ...12
2.3.1 Strand Space..13
2.3.1.1 Authentication Tests ..18
2.3.1.2 Penetrator Strands ..22

III. Analysis Methodology...25

3.1 The PKI Strand Space..26
3.1.1 PKI Penetrator...27

3.3 Protocol Independence though Disjoint Encryption..28

IV. An Analysis of the TLS Protocol...31

4.1 Transport Layer Security Protocol...31
4.1.1 TLS: Server Authentication Protocol..32
4.1.2 TLS: Server & Client Authentication Protocol.................................34
4.1.3 TLS: Resume Session Protocol...35

4.2 SPKI Integration into TLS...38
4.2.1 Certificate Chain Validation Protocol Design.38

4.3 TLS Strand Space Analysis ...41
4.3.1 Isolated TLS..43
4.3.2 Isolated Resume. ...48
4.3.3 Isolated CCV...51

4.4 TLS Protocol Independence...52
4.4.1 SAP, Resume & CCV. ..52
4.4.2 SCAP, Resume & CCV. ...54

V. Final Words..56

v

5.1 Summary ..56

5.2 Future Work ...57
5.2.1 Security Policy Design..57
5.2.3 Performance Based Analysis. ...57
5.2.4 Hardware Demands...58

5.2 Conclusions..58

Appendix A: Strand Space Protocol Example ..59

Bibliography ..60

vi

List of Figures

Figure Page

Figure 1 Strand space edges.. 20

Figure 2 TLS Server Authentication... 33

Figure 3 TLS Server & Client Authentication.. 35

Figure 4 Resume Session .. 36

Figure 5 Certificate Chain Validation Protocol .. 41

Figure 6 the Simple Protocol .. 59

vii

List of Tables

Table Page

Table 1 Sub-term relationships of terms 14

Table 2 Strand space operators 27

Table 3 PKI penetrator strand types and signatures 28

Table 4 Server Authentication Protocol Principals 34

Table 5 Server and Client Authentication Protocol Principals 35

Table 6 Resume Session Protocol Principals 36

Table 7 End[] Function Inputs for Server & Client Authentication Protocol 37

Table 8 Certificate Chain Validation Protocol Principals 41

Table 9 Strand space assumptions 42

Table 10 Term differences in TLS base protocols 54

viii

AFIT/GCE/ENG/05-07

Abstract

Secure electronic communication is based on secrecy, authentication and

authorization. One means of assuring a communication has these properties is to use

Public Key Cryptography (PKC). The framework consisting of standards, protocols and

instructions that make PKC usable in communication applications is called a Public Key

Infrastructure (PKI). This thesis aims at proving the applicability of the Simple Public

Key Infrastructure (SPKI) as a means of PKC.

The strand space approach of Guttman and Thayer is used to provide an

appropriate model for analysis. A Diffie-Hellman strand space model is combined with

mixed strand space proof methods for proving the correctness of multiple protocols

operating in the same context. The result is the public key mixed strand space model.

This model is ideal for the analysis of SPKI applications operating as sub-protocols of an

implementing application.

This thesis then models the popular Internet Transport Layer Security (TLS)

protocol as a public key mixed strand space model. The model includes the integration of

SPKI certificates. To accommodate the functionality of SPKI, a new protocol is designed

for certificate validation, the Certificate Chain Validation Protocol (CCV). The CCV

protocol operates as a sub-protocol to TLS and provides online certificate validation.

The security of the TLS protocol integrated with SPKI certificates and sub-

protocols is then analyzed to prove its security properties. The results show that the

modified TLS protocol exhibits the same security guarantees in isolation as it does when

executing its own sub-protocols and the SPKI Certificate Chain Validation protocol.

ix

SIMPLE PUBLIC KEY INFRASTRUCTURE PROTOCOL ANALYSIS AND DESIGN

I. Introduction

Diffie and Hellman provided the foundation of public key cryptography in the

1970s in (1) and it has been used in electronic communications ever since. However, as

often as it has been used successfully, poor implementations have resulted in its

exploitation. It has become increasingly clear that the strength of a cryptographic system

rests not only on the mathematics of cryptography but also on the protocols and

implementation methods used in application design.

This work focuses on the cryptographic framework provided by the Simple Public

Key Infrastructure (SPKI). This highly customizable and flexible standard implements a

robust public key infrastructure aimed at overcoming the shortcomings of current X.509-

based architectures. Integrating SPKI into an existing application or building a new one

must be done with diligence. Despite its strong cryptography, SPKI is just as vulnerable

to the shortcomings of poor protocol design as any security framework.

This thesis demonstrates the use of strand space, the formal protocol analysis

method developed by Thayer, et al (2). The strand space formalism is used as a means of

integrating SPKI into the Transport Layer Security Protocol (TLS). The security

properties of TLS are proven and a new protocol, to accommodate the validation of SPKI

certificates, is designed. These results provide the solution to gaps in previous SPKI

secure web implementations, which assumed execution in a secure environment (27; 12).

Furthermore, the method used here encourages up front consideration to security protocol

1

design by incorporating analysis into the development process. As pointed out by Arkin,

Stender and McGraw in their article on software penetration testing (3:84-87), too often

security matters are taken into consideration late in the design process. However, if care

is taken when developing a protocol, strand space proofs can be direct implications from

the design.

Chapter 2 identifies the context of cryptography this project focuses on, the

motivation for SPKI development and the basic foundation of the strand space formalism.

Chapter 3 identifies how strand space was tailored to accommodate SPKI analysis and

how it is intended to prove properties about multiple protocols operating in the same

environment. Chapter 4 provides theorems and their proofs based on TLS security

properties and the execution of sub-protocols within the context of TLS. Additionally,

Chapter 4 contains the design of the new Certificate Validation protocol. The final

chapter provides a summary of the analysis, future work and conclusions.

2

II. Public Key Cryptography and Protocol Analysis
2.1 Security & Cryptography

The National Research Council (NRC) reveals in (4: Part I) just how critical

security in electronic communication is to individuals, companies and the government as

a whole. The essence of this security is to prevent the interception, disruption and

alteration of a communication between two or more principals. A modern day solution to

these problems is Public Key Cryptography (PKC). Developed in the seminal paper by

Whitefield Diffie and Martin Hellman (1), PKC offers solutions for secrecy,

authentication and non-repudiation, among other desired security goals of the NRC

proposal.

As PKC has developed, it has become common practice to use the Alice-Bob

scenario as meaningful, albeit informal means of discussing protocol interactions and the

security desires of principals executing a protocol. The nomenclature is introduced here

as it will be used throughout the analysis and is found throughout cryptography literature.

The scenario posits two principals, Alice and Bob, denoted in short hand as A and B.

Alice wishes to communicate some message to Bob. Depending on the sensitivity of the

information, Alice may want to authenticate Bob (or vice versa), ensure secrecy of the

communication or have Bob prove to her that he is authorized to receive the message.

The goal of a security protocol is generally to provide some combination of

secrecy, authentication or authorization. To begin, secrecy is the most basic of security

properties. A secret communication is intended to be impossible for a third principal,

3

referred to as a penetrator, to decipher. Consequently a protocol that is secret is assumed

to be impervious to eavesdropping.

Authentication, on the other hand, provides Alice with some degree of certainty

that she is in fact speaking with Bob. A ‘man in the middle’ attack such as the one

discussed in (5:8-10), would allow a penetrator to trick Alice into thinking she is talking

with Bob when in fact she is communicating with the penetrator. A message that can be

guaranteed through some cryptographic means to come from a particular party is said to

be authentic. A stronger version of authentication is non-repudiation. A non-reputable

message is provably sent and received from the appropriate principals.

Beyond authentication and secrecy, is authorization. Perhaps Bob authenticates

Alice, and they communicate securely, however Bob wants to know weather or not Alice

should be allowed to know what he is about to tell her. If he can determine Alice has

permission to receive the information, she is said to be authorized.

Public Key Cryptography offers a flexible solution to authentication and secrecy.

Each principal obtains a key-pair consisting of a public and a private key. Although the

keys are different, they exhibit mathematical properties such that a message encrypted

with one can only be decrypted by the other. The mathematics driving this functionality

is rooted in number theory and expressed thoroughly in (6:175-178, 275-280).

In PKC, each principal keeps one key secret and publishes the other to be publicly

available to other principals. In a public key environment, if Alice wishes to

communicate to Bob secretly, she encrypts her message with Bob’s public key. If Bob’s

private key is uncompromised, he is the only one that can decrypt and read Alice’s

message.

4

PKC also provides the ability to sign messages. Signing is the converse of an

encryption. A principal signs a message by using its private key to encrypt it. Due to the

property of the PKC key pair, everyone with access to the public key can then decipher

and read the message. However, if Alice signs a message with an uncompromised key

and supplies it to Bob, then Bob can be positive that Alice is the only one that could have

created that message. Of course in this situation the communication, although

authentically from Alice, provides no secrecy, as all principals that can hear the message

can use Alice’s public key to decrypt it. To provide secrecy to this interaction, the signed

message would need to be encrypted with a private or secret key.

Signatures enable the use of certificates. A certificate is a message signed by a

principal and is a guarantee from that principal. Often times trusted principals are an

authority of some type. For example a name authority provides certificates that assert

guarantees of a principal’s identity. A certificate issued by a certificate authority (CA) is

assumed to be true based on the trust of that CA. A certificate can be applied to

ownership of a resource, an identity or some other type of electronic relationship. For

example, take a scenario such that both Alice and Bob trust a third principal, Cyril. In

this instance, Cyril provides certificates to Alice and Bob. Alice’s certificate contains her

public key and the same is true for Bob’s certificate. When Alice sends a message signed

with her private key, Bob can decrypts it with her public key provided by Cyril’s

certificate. If Bob needs additional proof, he can ask Cyril to verify the authenticity of

the certificate used by Alice. In either case, Bob now knows or assumes that Alice is not

only who she says she is, but also she is who the CA, Cyril, claims her to be. This

5

scenario is simplistic, but it illustrates that a certificate provides a guarantee based on the

level of trust for the CA.

2.2 Public Key Infrastructure

A Public Key Infrastructure (PKI) is the combination of standards, procedures and

protocols used to issue and revoke keys or authenticate keys that are in used in public key

cryptography (7). The design of this infrastructure is just as important as the

cryptography itself. If there is a flaw in any part of the infrastructure, then the integrity

of the system as a whole is jeopardized.

For clarity, it is convenient to define common cryptographic terms. A key is

assumed to be either the public or private part of a key pair used in PKC. In general the

only keys PKC protocols openly use are the public keys, whereas private keys are stored

safely and only used their owners. Symmetric keys will be scarcely used; however, when

they are used they are identified with qualified names such as a session keys or long-term

keys. These are assumed to be generated in a secure manner or stored in a way that

prohibits their exposure.

Certificates, issued by Certificate Authorities, provide a guarantee about their

owner. Most commonly certificates provide guarantees about authorization, group

membership or identities. Regardless of what a certificate is issued to certify, all

certificates are a binding between a principal’s public key and the information

representing the certificate type.

A principal is a user of the system. Principals are one of two types, regular or

penetrator. A regular principal follows the protocols and standards of the PKI and

6

operates within system parameters. A penetrator is a malicious principal that drives to

undermine the security provided by the PKI.

A protocol is the functional description of principal interaction. A protocol

defines what information is sent, what format it is in and when to send it. Generally,

protocols are built with one or more security goals in mind. Thus, the execution of a safe

protocol will provide some combination of authentication, secrecy or authorization.

However, a protocol that attempts too much can lead to a cumbersome implementation.

If an infrastructure based on this is considered too burdensome to use, it is as useless as

not having a secure infrastructure at all (8).

2.2.1 X.509.

X.509 is the de facto standard for Internet PKI. X.509 establishes the framework

for a centrally controlled directory of cryptographic keys and users. The directory is

managed by Certificate Authorities, which carry out the procedures for supplying and

validating certificates. A corresponding authority in the structure is the Naming

Authority (NA). The NA controls the scheme with which a CA issues certificates to a

particular name. Often times it is convenient for NAs and CAs to be the same entity,

however, this can preclude independent CAs from sharing a single NA, which degrades

the continuity of the global directory X.509 relies upon (9).

X.509 certificates bind a public key to a name of a principal with a global

directory of names. This type of certificate is called a name certificate. X.509 relies on a

unique name for each user participating in the PKI. This empowers the infrastructure to

issue certificates and provide definitive guarantees as to the registered identity of

individuals. When a certificate is under question, all one needs to do is refer to the global

7

directory and all the necessary information is provided concerning that certificate and the

individual it was issued to.

In practice, X.509 has revealed a number of shortcomings. Privacy is an

important issue in cryptography; however, the existence of a global hierarchy inherently

lacks privacy. For example, a company that requires its employees to have some degree

of anonymity may want them to utilize PKC via the X.509 hierarchy. In doing so they

would identify themselves as an employee of that company. However, to protect against

this type of information leak, the company may choose not to register a portion of its

employees in the global directory. Although this protects that group’s privacy, it

diminishes the inherent strength of the directory by decreasing the number of

participants.

X.509 authentications rely on having on individuals registered to unique names.

This restricts usable names and also presents a considerable challenge to issue unique

certificates. Due to the global scope of the directory, it is a sizeable configuration

challenge to coordinate non-repeating names for all users.

Currently in draft form, the X.509 standard overall is a fairly complicated and

cumbersome standard. As a result, it has been subject to wide interpretation. There are

no guarantees between different implementations that certificates will be formed in the

same manner, be processed in the same way, or even be accepted by all applications

using them.

This overview is only meant to reveal some of the clear problems with the X.509

standard and justify why others are motivated to propose new standards. ` more thorough

8

review of X.509 and public key infrastructures is available in (10: 3-9), and the technical

reader is directed to the standard itself (9).

Carl Ellison, et al (8), in light of X.509 shortcomings, has proposed an alternative

infrastructure to support public key cryptography. They aimed at creating a PKI that is

extensible, robust and easy to use. This new PKI is aptly named the Simple Public Key

infrastructure (SPKI).

2.2.2 SPKI/SDSI.

In short, SPKI is just as its name suggests, a simple PKI. It was developed

concurrently with the Simple Distributed Security Infrastructure (SDSI), a standard for

defining certificates. Based on the same principles, these two standards eventually

merged to form SPKI/SDSI. For brevity, the pair is most commonly referred to as simply

SPKI.

Traditionally, certificates have been a binding between a name and a key.

However, Ellison, et al, point out in (11:7-8) that a key holder’s name is rarely of security

interest. Rather, it is argued, the authorizations of that person are inherently more useful.

Thus, in addition to name certificates, SPKI uses authorization certificates. This novel

concept allows an authority to associate an authorization directly to a principal. The

certificate thus is a binding of an authorization to a key and offers an explicit and

customizable assurance of authorization.

Authorization certificates enable a CA to provide anonymity and privacy to the

users of the PKI. If the identity of the principal is not contested but rather only a user’s

authorization to perform an action, a user’s identity can remain private. One application

of this is secret balloting. If keys are bound with no identifying information and

9

distributed blindly, then participants may use them to vote without revealing their

identity. This is made possible by using separate certificates for identity and

authorization. Where traditional certificates merge identity and authorization, SPKI

breaks these into two types of certificates, which offers the flexibility for unique

situations such as anonymous voting or group authorizations.

SPKI governs authorization through customizable authorization tags. There are

very few limitations to these tags in order for them to be easily applied in a diverse range

of applications. This flexibility, however, comes with a price. The issuers of the

certificates must have intimate knowledge of the authorization requirements of the

system. This problem is compounded by the distribution of certificates via delegation.

In the SPKI framework, each principal is empowered with the ability to issue

certificates. In short, each principal is a certificate authority for any resource it controls.

If a resource requires secrecy, authentication and authorization, then certificates granting

access to that resource reflect that all three security properties must be fulfilled to validate

access.

Intuitively, each principal is the keeper of his or her own resources. Therefore

must manage them and provide certificates that will make sense when supplying access

to those resources. Since certificates are issued by all principals, there is no need to

coordinate with other principals to ensure unique names. Just like the authorization

certificates, each principal has its own frame of reference concerning principals it will

work with. Each principal’s perspective is referred to as a namespace. A namespace

represents the domain of that principal. A principal that controls a university will have a

large namespace, while a student within that university may have a very limited one.

10

The management of a large namespace is simplified by the ability to delegate

authority through SPKI certificates. Using the university example again, the principal in

charge of a university can delegate university authority to its various departments, and in

turn the departments can delegate it down to their own divisions. Ultimately, a student in

the delegation chain may be issued a certificate that identifies him or her as a student of

the university in the computer science department in the graduate school.

An authorization certificate has a delegation bit to manage the user of delegation.

If the delegation bit is enabled, then the principal issued that authorization can delegate it

to principals in its own namespace. In the university example, the university initially

supplies an authorization with the delegation bit enabled. In turn each level of the

hierarchy re-issues the authorization with the enabled bit. Finally, the student receives a

certificate with a disabled delegation bit. Thus, although the student is authorized to

access student resources, that student does not have the ability to delegate that

authorization to anyone else. In this way, a local hierarchy is built with the delegation of

authority beginning at the university level and ultimately ending with a student who no

longer has the ability to delegate.

Once delegation has taken place and meaningful keys are distributed, there still

remains the challenge of proving a certificate was issued from the proper chain of

authority. This process is called certificate chain discovery. In essence it follows a

transitive property. For example, imagine three principals A, B, and C. A is the owner of

a resource, and grants authority to B to delegate access to that resource. B delegates

authorization to C to use the resource. In turn, C asks to use the resource, and is

challenged by A. In response to the challenge, C provides a certificate chain that shows

11

the delegation from A B C. A reduces the certificate chain to a simple form A C,

and is convinced that C should be authorized to access the resource.

Due to the potential problem of determining the appropriate chain to supply given

a challenge, a good deal of research has been conducted on this topic (12;13;14) and has

resulted in a tractable and efficient algorithm for certificate chain discovery.

2.3 Protocol Analysis

Modern protocol proof methods are generally founded on two seminal papers

with regards to abstraction and focus. The Dolev-Yao model, proposed originally in

1981 (15), abstracts protocol messages into a term algebra. In applied cryptography

messages are bit-strings, however, abstracting them into terms allows the focus of the

analysis to be on the protocol itself. These terms are then applied to a first order

equational logic, which allows them to be manipulated as they would in a cryptographic

protocol.

Because attacks on cryptographic systems generally avoid challenging the

mathematics cryptography is built upon (6), but rather exploit protocol design, it is

possible for poor protocols to undermine the very security they intend to provide. (16)

provides numerous examples of security protocols that are now defunct or have

undergone numerous fixes to prevent simple intrusions. Many protocol attacks are a

result of incomplete, misguided or misinterpreted proofs of protocol correctness.

Along this vein, Woo and Lam argue that the problem with protocol analysis is

that it fails to separate correctness and verification. Instead, it includes too much in a

12

single analysis, without considering the importance of individual parts. This focus, they

argue, only contributes to complicated proofs that are often misunderstood.

Consequently, Woo and Lam break down analysis into two elements, secrecy and

correspondence. Secrecy is the notion of maintaining data integrity in the presence of a

penetrator. Integrity includes a secret message remaining secret and unaltered from when

it was sent. Correspondence, on the other hand, is what has been referred to thus far as

authentication. By dividing these two notions it is possible to obtain flexible analysis for

a diverse range of protocols.

Based upon Dolev-Yao and supported by the Woo-Lam notion of separation of

secrecy and authentication, Thayer, et al, developed the strand space formalism for

protocol analysis (2).

2.3.1 Strand Space.

The strand space formalism establishes an inductive base used to prove theorems

about protocol correctness. This section provides the basic definitions of strand space,

although a more thorough description is available in the defining papers (2; 17; 18; 21;

28; 29).

The strand space formalism imposes a Dolev-Yao style set theory on protocol

messages. All data used and communicated by a protocol is a member in the set A. This

set is then specialized into disjoint sets for more accurate models of data. In particular, A

contains the subsets of keys K and texts T. The language of strand space is then built

freely from these sets using operators appropriate to the protocol being analyzed (2).

The encryption operator takes any term g from A, a key k from K, and outputs an

encryption {g}k that is in A, but not in either K or T. The join operator simply takes two

13

terms, g and h, concatenates them and results in a new term in A. These sets allow a

proof to reason about which sets of information are available to each principal and

penetrator of a protocol. As protocols become more specialized, these operators can be

expanded, such as in (17).

Furthermore, a sub-term relationship is defined over terms. The result of the

join operator is a term which contains the two sub-terms used to create it. On the other

hand, the sub-term of an encryption is only the payload of the cipher text and not the key

used to create it. Formally, the sub-term relationship is the smallest inductive relation

such that it has the properties of Table 1 (23:11-23).

Table 1 Sub-term relationships of terms
Relationship Elucidation

t t t is a sub-term of itself

t {g}k if t g t is a sub-term of an encryption only if it is
a sub-term of the payload of that
encryption.

t gh if t g OR t h t is a sub-term of a concatenation if it is a
sub-term of either of the terms composing
the concatenation.

The strand space formalism models a protocol into a set of nodes and edges. Each

principal of a protocol is modeled by a subset of these nodes and edges forming a graph

structure called a strand. A strand consists of a series of temporally ordered nodes

connected by intra-strand edges representing a series of actions. These actions will

always be appropriate for the type of strand they are on and can include the deciphering

of an encryption, the concatenation of terms or the separation of terms. Each node of a

strand is associated exclusively with the reception or the transmission of a message from

14

that node’s strand to or from another strand. Inter-strand communication is represented

by inter-strand edges . An inter-strand edge always includes a term from the set A

representing information communicated to or from that node.

A principal is represented by one or more strands. Several strands linked together

constitute a strand space representing all possible communications between connected

strands. Subsets of this graph, called bundles, are more manageable and are used to

accurately and minimally represent protocol principal interactions. Appendix A provides

a simple example of a protocol and its strand space representation.

These and other formal definitions constitute the foundation of the strand space

formalism (2: 6-15):

A strand space Σ is composed of the following:

nodes – a tuple s,i , where s is a strand, Σ∈s and i is an integer 1 ≤ i ≤ length of

the strand. The set of nodes is denoted . The node s,i belongs to the strand s

and every node belongs to exactly one strand.

terms – if n = s,i ∈ then index(n) = I and strand(n) = s. Then term(n) is the

ith signed term in the trace of s. That is the ith term communicated between this

strand and another.

inter-strand edges – an edge n1→ n2 if and only if term(n1) = +t and term(n2) = -t

for some t ∈ A. The sign of a term indicates weather it has been sent (positive) or

15

received (negative). An inter-strand edge captures a causal relationship between

strands.

intra-strand edges – When n1 = s,i and n2 = s,i+1 and n1, n2 ∈ , there is

and edge n1 n2. This type of edge expresses that n1 is an immediate causal

predecessor of n2 on the strand s. The set n′ is used to denote all predecessors of

a node on a single strand.

occurrences – a term t is said to occur on a node n if and only if t term(n).

entry points – the node is an entry point for a set of terms I if and only if

term(n) = +t for some t ∈I, and whenever term(n′) I.

originations – A term t originates on if and only if n is an entry point for

the set I ={t′: t t′}.

unique originations – a term t is uniquely originating if and only if t originates on

a unique .

bundles – a bundle consists of a finite subset of nodes, inter-strand edges and

intra-strand edges of a given strand space. If the node n2 ∈ and term(n2) is

negative then there is a unique n1 ∈ such that n1→n2. Furthermore, if n1 n2 is

16

in Σ and n2∈ then n1 n2 is in . Finally, this subset of Σ must be acyclic to be

considered a bundle.

It is worthwhile noting that the properties of a bundle allow a partial order relation

to be defined. Thus, is the reflexive, anti-symmetric, transitive closure of the edges of

a bundle. This ordering ensures that every non-empty subset of nodes in a bundle has a

minimal member with respect to . Furthermore any term, t, of the minimal node of a

bundle must have a positive sign, and is an originating occurrence of t.

Strand space was developed to prove properties not only about protocols in an

isolated environment, but also can represent multi-protocols in a single strand space. A

strand space representing a primary protocol and any number of sub-protocols is called a

mixed strand space. A protocol used in the presence of sub-protocols is called a base

protocol. A base protocol can have any number of sub-protocols that may influence the

security properties of the all the protocols it interacts with.

In contrast to this hierarchy of sub-protocols, is the analysis hierarchy. The

subject of an analysis is called the primary protocol. Any other protocol operating in the

same strand space as a primary protocol is called a secondary protocol. The primary

protocol is used to produce the foundation of definitions, properties and rules with which

to compare secondary protocols. A base protocol may intuitively seem like the best

choice for a primary protocol, however, this does not have to be the case.

More formally, in a mixed strand space Σ, the set Σ1 is the set of all primary

regular strands. The remaining regular strands Σ2 are secondary strands and constitute

the set difference of all primary strands and the set of regular strands. Thus, the mixed

17

strand space Σ is composed of the disjoint sets of primary strands Σ1, secondary strands

Σ2 and penetrator strands PΣ.

The strand space model is further extended in (17) to provide a means for

analyzing the Diffie-Hellman (DH) protocol. A protocol is said to be conservative with

regard to DH if a generated key arises on a regular node only when the values used to

create it arise on regular nodes. Furthermore, a protocol is said to be silent with respect

to DH if no DH generated key originates on a regular node. It is also convenient to

conclude that a bundle over a protocol that is silent and conservative with respect to DH,

and only has DH constructors that arise on regular strands will never originate a DH

generated key.

The strand space formalism allows the application of induction to prove the

properties of bundles representing protocol interactions. Various proofs that use this

formalism are published in (2). As strand space has developed it has expanded to include

a proof method to more easily apply the formalism to protocol analysis: the

authentication test.

2.3.1.1 Authentication Tests

The authentication test method for strand space analysis was established to

expedite secrecy and authentication proofs (18). Authentication tests do this by building

on strand space theory and an assumption referred to as the normal form lemma. The

normal form lemma simply limits the actions of the penetrator to non-trivial

manipulations of messages. Among other things this means that if a term is encrypted

with a key the penetrator does not have, then it cannot be deciphered. It has been proven

that enforcing this restriction on the penetrator only forces an ordering of actions, but

18

does not limit what can be accomplished by the penetrator. The useful consequence of

this is that if a term is sent encrypted with a safe key then it can only be altered by a

regular participant. Thus, if that term is returned altered, it can be assumed that a regular

participant received it, altered it, and sent it back. Such a term is what Thayer, et al,

defines as a test component and the actions taken on it as an authentication test.

Authentication tests rely on two additional assumptions, proven elsewhere (18),

regarding keys used in cryptography. First, messages sent with a key known by the

penetrator can be manipulated by the penetrator. In addition, keys that are sent encrypted

with a key known by the penetrator then become a key known by the penetrator. These

are the only means the penetrator has of obtaining keys. Conversely, a key is considered

safe if it is either never uttered by a principal in the protocol or is only uttered as a sub-

term of a term encrypted with a key that is not known by the penetrator.

In order to reason about messages sent between strands, it is necessary to deal

with the atomic pieces of terms. These are defined as components. A term t0 is a

component of a term t if it is a sub-term of t, if it is not a concatenated term, and no

concatenated term in t is equal to t0 Less formally, components are either an atomic value

or they are an encryption.

A component is considered new at a node in a strand if it is a component of that

node, but it is not a component of any previous node on that strand. The fact that it may

have been a sub-term of a larger component previously in the strand makes no difference.

Since the component was not a visible component of previous terms, it is new at its first

non-sub-term appearance. Thus, it is an intuitive assumption that if a component occurs

19

new on a regular node, then the strand has either generated, encrypted or decrypted

information to supply the new component.

The authentication tests themselves revolve around the transformation of

components. An edge n1 n2 is a transformed edge for a term t, if n1 is positive and n2

is negative, t is a sub-term of n1 and there is a new component t2 of n2 which contains t as

a sub-term. On the other hand an edge is a transforming edge if n1 is negative and n2 is

positive, t is a sub-term of n1 and there is a new component of n2 which contains t as a

sub-term. Figure 1 shows visually a simple example of both types of edges.

Figure 1 Strand space edges

Components of interest in proofs are known as test components. A component c,

is a test component for a term t at a node if t is a sub-term of c and c is a component of

that node, and the term c is not a proper sub-term of a component of any other node in the

strand space. Combining this with the previous edge definitions, an edge between two

nodes (n1 n2) is a test for term t if t uniquely originates at node n1 and the edge

between n1 and n2 is a transformed edge for t.

A test component is used as a challenge to another participant in a protocol. One

way to offer this challenge is to take a uniquely originating value, such as a nonce,

20

encrypt it and send it to another principal. At this point, the challenge is to see if the

principal is able to decipher it, this is called an outgoing test. If instead the value is sent

in the clear and is expected to be returned in an encrypted form, the interaction is an

incoming test. Depending on the properties of the messages being sent, these two

authentication tests can offer a variety of guarantees to one or both of the parties.

Authentication tests provide guarantees about the existence of regular strands

receiving sent messages. If a bundle includes an outgoing test for a component then there

exists a corresponding set of nodes from another regular strand that constitute a

transforming edge for that component. Additionally, if a component c only occurs as a

sub-term of an encrypted term t of the regular strand including the transforming edge, and

t is not a proper sub-term of any regular component, and the key used to encrypt it is not

known by the penetrator, then there must be a negative regular node with t as a

component.

The corresponding assertions are also valid for incoming tests. Given a bundle

and a term t that is an incoming test for a within that bundle, then there exist regular

nodes that t is a component of and there is an edge corresponding to those nodes that is a

transforming edge for a.

One final definition is required for a third authentication test, the unsolicited test.

A negative node n is considered an unsolicited test for an encrypted term t, if t is a test

component for any a in n and the encrypted key is not known by the penetrator. Thus,

given a bundle with a node n which receives an unsolicited test for an encrypted term t,

then there must exist a positive regular node from another strand such that t is a

component of that node.

21

These authentication tests are combined with the properties of the terms being

sent in a protocol to prove authentication and secrecy guarantees. Detailed examples are

available in (18).

2.3.1.2 Penetrator Strands

Regular strands are those that represent a legitimate and accurate run of a

protocol. In a two-principal protocol, regular strands are generally called the initiator and

responder strands. Protocols that include a trusted server will also include a server

strand. This naming method of strands is not formal; however, it is employed to make

reasoning about protocols more easily understood. The other type of strand useful to

protocol analysis is the penetrator strand.

In strand space the penetrator is represented by eight types of penetrator strands.

These strand types are separate in order to differentiate what a penetrator can and cannot

do in an attempt to infiltrate a protocol. Roughly speaking, the eight strands capture the

penetrator’s ability to block messages, generate messages, join messages from parts of

other messages, and apply encryption or decryption. These effectively model what

typical protocol attacks consist of and thus reveal these weaknesses during protocol

analysis. The eight strands are represented by a single letter, M, F, T, C, S, K, E, or D.

Their definitions follow.

M : Sending a message.

F : Receiving a message.

T : Receiving a message and sending it out to two other strands.

22

C : Concatenation. Receiving two different terms, and sending the concatenation

of them to another strand.

S : Separation. Receiving a concatenation of terms, separating them, and sending

each out individually.

K : Key. Sending a key as a term, all keys sent this way are assumed already

known to the penetrator.

E : Encryption. Receive a key, and a term, and send out the term encrypted with

the key.

D : Decryption. Receive in inverse key, and an encrypted term. Decrypt the

term, and send out the unencrypted term.

Because the model of the penetrator is not protocol specific, it can be applied to

any protocol under analysis. More importantly, it can help determine what information

the penetrator can learn or how the penetrator can trick other strands into believing they

are talking with someone else.

An infiltrated strand space is the union of regular and penetrator strands. Bundles

carved out of infiltrated strand spaces reveal the weakness or conversely the strengths of

a protocol under attack. Such an analysis is demonstrated in (2; 17; 18; 21; 28; 29).

In summary, a protocol is a sequence of interactions between principals and

potential penetrators of the protocol. In strand space, each participant (regular and

penetrator) is represented by at least one strand. A strand is built representing each

principal’s actions; messages sent are represented by an edge between two nodes on

different strands. Each node has a causal relation to other nodes in the strand space,

23

either within its own strand or to a node of another strand. A bundle is a sub graph of the

strand space. Properties of bundles accommodate inductive proofs due to their partial

ordering. A bundle representing a protocol may include only principal strands or

principal strands entwined with penetrator strands. When bundles exhibit very specific

properties, they allow assertions to be made about other strands in the protocol. These

assertions are made through the application of authentication tests and prove the secrecy

or authentication of the messages and principals, respectively, involved in the interaction.

It is also important to note that in strand space assertions made about a protocol proven

with authentication tests will be correct regardless of the presence of penetrator strands

within its bundle.

24

III. Analysis Methodology

The SPKI standard provides a cryptographic framework to build secure

applications. The framework supplies certificates that are used for authentication,

secrecy and authorization. However, developed with the goal of flexibility in mind, the

SPKI standard has minimal protocol specifications. Due to the sensitivity of information

used in cryptographic applications, it is important for them to rely on formal proofs of the

security properties they purport to provide. Consequently, it is necessary to supply these

proofs before a secure application can be relied upon.

Furthermore, protocol design is a delicate matter. Overlooking minor details in a

protocol can result in exposing the cryptographic system to catastrophic intrusions. A

common practice is to imbed a new protocol into one that has already been proven

correct. However, this apparently innocuous integration can completely undermine the

security of the existing protocol. An example of this is the Neumann-Stubblebine

protocol. The Neumann-Stubblebine protocol provides proper authentication on its own;

however, upon execution of its session resume sub-protocol, the authentication of the

original is undermined (17).

Since SPKI is an enabling technology, it will generally never be implemented as a

stand-alone application, but rather, will be integrated into another application. That

environment will utilize its own protocols and SPKI will be adjusted to its needs. This

integration must be proven to supply the necessary security properties before it can be

trusted. To prove that the implementing application and SPKI harmonize their security

25

goals, it is necessary to prove the base protocol in an isolated environment in addition to

in an environment running sub-protocols such as SPKI.

This chapter identifies which components of the strand space formalism can be

assembled to provide a proof foundation for SPKI applications. Using this base and the

strand space method of mixing protocol in a single analysis, the method is well-suited for

base and sub-protocol execution in the same strand space. Furthermore, the methodology

guides protocol design to ensure the security properties of the primary protocol are

retained.

3.1 The PKI Strand Space

Due to the unique nature of cryptographic protocols, the strand space formalism

must be adjusted to accommodate any unique operations of a protocol before it can be

applied in analysis. This is done by adding additional operators to the term building logic

and by adding new types of penetrator strands representing the actions of the added

operators.

 The strand space here is constructed for an environment conducive to DOD

applications which would benefit from the security measures supplied by a public key

infrastructure. In particular, it is a hybrid of the strand space model used in stand-alone

Diffie-Hellman analysis (17) and in a mixed-protocol environment (28).

To build this strand space, the term algebra presented in Chapter 2 must be

expanded to include PKI operations used in the Diffie-Hellman (DH) protocol (17). This

is accomplished by adding the disjoint subset D to the set of all terms A. D represents

DH exchange values. These are the values used to coordinate the shared secret key in a

26

DH exchange and the generated key from the DH algorithm. In addition, let H represent

the range of a one way hash function and assume that H is another disjoint subset of A.

The operators available on all terms must also be expanded (17). Operators for

hashing, signing and creating DH keys are included. All operators of the DH strand

space are listed in Table 2.

Table 2 Strand space operators
Operator Meaning Notation

hash : A → H Injective hash function hash(t)

encr : K × A → A Encryption {t}k

sign : K × A → A Signature [t]k

join : A × A → A Concatenation gh

DH : D × D → K Diffie-Hellman Calculation f(ds,dc) → k′

In addition to the term algebra, the PKI penetrator is given functionality as

appropriate to the PKI strand space. The new model of the penetrator defined in

following section.

3.1.1 PKI Penetrator.

 The PKI penetrator model is the standard strand space penetrator, with the

addition of public key operations in terms of the F, σ, X and H strands. Table 3 provides

the type of strands used to model penetrator actions.

27

Table 3 PKI penetrator strand types and signatures

Strand designator and type Strand signature
M – simple text message < +t >
C – concatenation of terms <-g, -h, +gh>
S – separation of terms < -gh, +g, +h >
k – key tell < +k >
E – encryption of terms < -k, -h, +{h}k >
D – decryption of terms < -k, -{h}k, +h >
σ – signature of terms < -k, -h, + [h]k >
X – extraction of signed terms < -[h]k, +h >
F – create fresh Diffie-Hellman value < +ds >
H – compute injective one way hash < -g, +hash(g) >

This model works on the assumption that the encryption being used by the regular

strands is strong. The strong encryption assumption is that it is impossible for the

penetrator to guess a key used in an encryption or signature unless he already has that

key. Similarly, hashing functions are assumed to be irreversible and unpredictable, such

as the MD5 (19) and SHA-1 (20).

3.3 Protocol Independence though Disjoint Encryption

In order to mix two or more protocols successfully, it must be proven that each

protocol is safe in isolation and that the execution of all protocols together is also safe.

One way to accomplish the latter is to prove that the protocols to be mixed are

independent of one another. If so, then it can be concluded without further proofs that all

security properties a protocol exhibits in isolation are also valid in the mixed

environment.

28

Protocol independence requires further extensions to the strand space formalism.

These were introduced in (28) as the concept of respect, but have been refined (21) to

form a more thorough model called independence.

Two crucial definitions are those of privacy and fullness. An atomic value

is said to be private in Σ if it never originates in the set of secondary strands ΣKTa U∈ 2

or the set of penetrator strands ΣP. If it is not private, then it is considered public.

Furthermore, a concatenated value gh is public if g and h are public and an encrypted

value {h}k is public if h and k are. Additionally, a strand space Σ is said to be full if

every atomic value that originates on ΣKTa U∈ 2 also originates on some M-strand or

K-strand in Σ. Intuitively, this defines a strand space with a penetrator that is fully

capable of listening to messages and operating with them according to his defined

actions. Thus, a full strand space is one with a penetrator strand entwined with regular

strands to accommodate the full extent of the penetrator’s abilities.

Disjoint Outbound Encryption – A strand space Σ has DOE if and only if given a

positive node n1 ∈ Σ1, a negative node n2 ∈ Σ2 and a private term a {h}k such that

{h}k term(n1) and {h}k term(n2), then there is no positive node such that

n

xn

2
+⇒ xn and a occurs in a new component of (21). xn

Disjoint Inbound Encryption – A strand space Σ has DIE if for all negative n1∈Σ1,

positive n2∈Σ2 and for all {h}k, if {h}k term(n1), then {h}k t0 for any new

component t0 of n2 (21).

Disjoint Encryption – A strand space Σ has disjoint encryption if it has both

disjoint inbound and disjoint outbound encryption (21).

29

If Σ is full and has disjoint encryption, then Σ1 is independent of the set Σ2. A

simple case of independence occurs when the set of keys used to encrypt terms in Σ1 are

disjoint from those used in Σ2. Intuitively, if no similar keys are used by both protocols,

then independence is trivially true as the conditions are never challenged.

30

IV. An Analysis of the TLS Protocol

4.1 Transport Layer Security Protocol

Arguably one of the most widely used protocols in secure Internet

communications is the Transport Layer Security protocol (TLS) (22: 1-2). TLS is a

layered protocol designed to provide secret communication between two principals while

offering the ability to authenticate each participant (23).

The two layers of the TLS protocol are the TLS Handshake protocol and the TLS

Record protocol. The Handshake protocol is used to allow the principals to agree on

what protocols to use for symmetric key generation. The Record protocol then uses the

newly generated symmetric key to exchange information securely. RFC 2246 specifies

the Change Cipher Spec and Alert protocols, in addition to the Handshake and Record

protocols; however, for this work the functionality of these are assumed to be subsumed

by the Handshake protocol.

The TLS Handshake protocol is a simple protocol designed to coordinate the

usage of other protocols. During the Handshake protocol, principals negotiate not only

which key exchange protocol to use, but also the parameters to use while running these

sub-protocols. The two sub-protocols used for key exchange are the Diffie-Hellman

public key agreement protocol and the RSA key exchange protocol (24). Once agreed

upon, the key exchange protocol is executed as a sub-protocol. After a session key is

generated from a successful key agreement protocol, the Handshake protocol concludes

and TLS protocol will continue by executing the Record protocol or abort as is

appropriate.

31

To apply strand space, the TLS protocol was abstracted into Dolev-Yao style

terms (15). The abstraction allows the strand space proofs to reason how the protocol

operates rather than obfuscate the analysis with implementation details.

The model used in this analysis was designed to focus on the interaction of

cryptographic terms in the TLS protocol. Thus, the details of clear text messages

identified in the TLS standard (23) are abstracted to a simple terms as they have limited

impact on the underlying cryptography. A similar abstraction was made in (17).

The TLS protocol itself is abstracted into one of two base protocols, either the

SAP, Server Authentication Protocol (Figure 2) or the SCAP, Server & Client

Authentication Protocol (Figure 3). Sub-protocols executed within the context of these

base protocols are the Resume Session (Figure 4) and the Certificate Chain Validation

protocols.

4.1.1 TLS: Server Authentication Protocol.

The TLS Server Authentication protocol is depicted in Figure 2. The client

initiates the exchange by sending a message with two components in order to negotiate

which protocol to use for the key exchange. Tc is a list of client-supported protocols and

parameters. If the client desires to resume an old session, it also sends the preferred

session ID, Sc. However, most frequently the Sc message is a null message, indicating a

new session needs to be established. This first exchange is a minimized representation of

the ClientHello message in the TLS standard (23). Tc is assumed to include DH.

32

Figure 2 TLS Server Authentication

The server either recognizes the old session ID and executes the Resume Session

protocol, or it continues on. If the server continues with the Server Authentication

protocol, the server responds with Ts to specify the protocols and parameters to be used

for the remainder of the exchange. The server also sends the session ID, Ss, to be used as

a reference for this connection. Ts is assumed to specify DH.

 Additionally, the server replies with a certificate chain, ks[], of SPKI certificates

detailing its identity. Each link of the chain is a certificate that binds the server’s public

key to a name or authorization. The chain in its entirety, ks[], is a logical implication of

certificates proving the server’s identity from a client-verifiable source.

Furthermore, the fresh DH values are signed with the server’s private key and

presented to the client to negotiate a shared secret. These exchanges represent the

ServerHello, Certificate, ServerKeyExchange and ServerHelloDone messages defined in

the TLS standard.

33

The third message is the unsigned DH response, dc, and a hashed message digest,

End[client]. The digest is signed with the newly calculated shared secret k′. This

exchange represents the ClientKeyExchange, ChangeCipherSpec, and ClientFinished

messages.

The final exchange returns a hashed digest, End[server], that allows the client to

verify the details of the exchange were done according to the standard and that there have

been no alterations.

The strand space traces of the principals in this protocol, Client and Server, are

provided in Table 4. They are identical with the exception that their signs are reversed.

Table 4 Server Authentication Protocol Principals

Principal Signature Strand Trace

Client[Tc, Sc, Ts, Ss, ks[], ds, dc] + Tc, Sc, -TsSsks[][ds]ks, +dc{End[]}k′, -{End[]}k′

Server[Tc, Sc, Ts, Ss, ks[], ds, dc] − Tc, Sc, +TsSsks[][ds]ks, -dc{End[]}k′, +{End[]}k′

4.1.2 TLS: Server & Client Authentication Protocol.

The Server & Client Authentication version, shown in Figure 3, is only subtly

different from the previous protocol. The Server adds an additional request, Tcert,

specifying what type of certificate must be produced by the client to complete the

exchange. Furthermore, the client returns a certificate chain of its own kc[] and signs its

half of the DH value with a private key. The exchange then ends just as the Server

Authentication protocol does.

34

Figure 3 TLS Server & Client Authentication

The strand traces for regular principals for the Server & Client Authentication

protocol are provided in Table 5.

Table 5 Server and Client Authentication Protocol Principals

Principal Signature Strand Trace

Client[Tc, Sc, Ts, Ss ks[], ds, kc[], dc] + TcSc, -TsTcertSsks[][ds]ks,
+kc[][dc]kc{End[]}k′, -{End[]}k′

Server[Tc, Sc, Ts, Ss ks[], kc[], ds, dc] − TcSc, -TsTcertSsks[][ds]ks,
-kc[][dc]kc{End[]}k′, +{End[]}k′

4.1.3 TLS: Resume Session Protocol.

The final TLS protocol being analyzed is the Resume Session protocol. Unlike

the other two, this protocol can only be executed following a successful execution of

either the Server Authentication or Server & Client Authentication protocol. Instead of

establishing a new session ID, this exchange restarts a session based on a previously

35

negotiated secret key. The ability for the server to decline a resume request and the hash

message digest End[] are the controls of this protocol to prevent abuse and limit

feasibility of attacks. The strand space trace is depicted in Figure 4 and principal traces

in Table 6.

Table 6 Resume Session Protocol Principals

Principal Signature Strand Trace

Client[Tc, Sc, Ts, Ss] + Tc, Sc, -TsSs{End[]}k′, +{End[]}k′

Server[Tc, Sc, Ts, Ss] − Tc, Sc, +TsSs{End[]}k′, -{End[]}k′

Figure 4 Resume Session

The End[] function warrants further explanation. First, as mentioned above, it is a

symbolic representation of the final messages sent between participants in the TLS

protocol. The actual composition of these messages varies depending on the negotiated

parameters; however, the properties remain the same. Each is constructed using a mix of

pseudo-random functions, MD5, and SHA hashes. It is assumed that these digest values

uniquely originate at their source node. A message produced by a server is constructed

with a label indicating as such, whereas a message created by a client is also

36

appropriately labeled before the hashing takes place to prevent the confusion, replay

attack or replacement of one instance with another.

The uniqueness of each instance of the End[] function can be illustrated with the

composition of its inputs. An example of a set of inputs would include the generated

session key k′, a specification of what role the message is being sent under (client or

server), then an ordered array of previously sent messages history[] and an array of

previously sent secrets secrets[]. The result of this function is a uniquely originating

value Nx that is unpredictable to a penetrator but reproducible by a principal with all the

correct information. The input and outputs of the End[] function are illustrated in Table 7.

Table 7 End[] Function Inputs for Server & Client Authentication Protocol
Message Input History[] Secrets[] Output
3 k′, client,

history[],
secrets[]

TsSs,
TsSsTcert ks[][ds] ks

k′ N0

4 k′, server,
history[],
secrets[]

TsSs,
TsSsTcert ks[][ds]ks,
kc[][dc] kc{ N0}k′

k′,
N0

N1

x k′, <role>
history[]
secrets

TsSs,
TsSsTcert ks[][ds]ks,
kc[][dc] kc{ N0}k′ …
…{Nx-1}k′

k′,
N0, …

… Nx-1

Nx

The aim of the End function is to provide a unique, secure, non-reversible digest.

A received digest can then be compared to a self-generated one in order to confirm all the

messages and secrets shared between two principals. Although there have been recent

concerns with the MD5 hash (25; 26), it is still considered to be a safe means of creating

digests.

37

4.2 SPKI Integration into TLS

During the analysis, reference to TLS will imply a reference to the abstract

Handshake protocol as described below. The SAP and SCAP are assumed to be the base

protocols and will be executed using the Diffie-Hellman key agreement algorithm using

SPKI name certificates in place of X.509 certificates.

TLS currently uses X.509 certificates, which are functionally identical to SPKI

name certificates. Consequently, SPKI certifications can be easily substituted (27).

Furthermore, the strand space theory is ideal for the analysis of public key protocols and

in particular to the Diffie-Hellman key agreement protocol (17). The integrity of TLS

executing with sub-protocols is a concern; however, it fits the model of the mixed strand

space formalism defined in (28) and can be analyzed in a mixed strand space.

4.2.1 Certificate Chain Validation Protocol Design.

In the standard TLS, there is no way for the client to specify what type of

certificate he requires the server to supply for authentication. In practice, this is

accommodated by the use of global or far-reaching certificate authorities that are for the

most part universally recognized. In an SPKI TLS application, an unprompted certificate

chain may end at a certificate authority the client has no knowledge of. To accommodate

this problem, it will be assumed that the initial message exchange used to coordinate

which protocols to use will also coordinate a certificate base for the server to provide a

certificate chain. For example, the standard ClientHello message contains two arrays

specifying cipher suites and compression methods (23:34-35). To accommodate SPKI

TLS, a third array of high level authorities can be included to identify which sources of

trust this client will work with. Thus, the server still retains the option of choosing how

38

the connection is made, what methods of security to implement and in addition can

decide if it can provide a certificate chain to any of the client’s known authorities.

Adding this certificate chain to this analysis is hidden by the degree of abstraction;

however, if it were explicitly represented it would appear in the first message sent from

the client concatenated with Tc (Figure 3).

Furthermore, the standard TLS protocol assumes that certificates can be validated

offline. However, realistically, offline validation introduces security concerns in the form

of stale revocation lists and compromised keys. To overcome these problems, certificates

can be checked online, thus eliminating delays in revocation and validation. TLS can use

SPKI to solve this problem if it is augmented to accommodate the frequent validation of

certificates via the SPKI hierarchy of certificate authorities. This will necessarily include

the addition of a protocol between a client and an authority which may need to execute as

a sub-protocol. The inclusion of this protocol will allow TLS to accommodate online

validation. The SPKI standard currently has no protocol specification for certificate

chain validation, and thus one is developed here and will be integrated into the TLS

model used in analysis.

The term certificate chain discovery appears in several contexts with regard to

SPKI and thus it is important to distinguish them. First, the SPKI standard provides a

tractable algorithm called Certificate Chain Discovery for a principal to sift through

owned certificates in order to provide a minimal certificate chain. The second use of this

term is in the TLS standard. A principal uses certificate chains, similar to those of SPKI,

to trace a certificate from its CA to the principal providing it. In order to avoid

39

confusion, the protocol designed here for certificate chain discovery will be called the

Certificate Chain Validation protocol (CCV).

CCV requires two regular participants, a solicitor and an authority. It is assumed

that the authority is an issuer of certificates, whereas the solicitor is providing a

certificate to be verified.

The solicitor requires the authority to be authenticated. By authenticating the

authority, the solicitor is assured of the authority’s identity and hence assured of that

authority’s response to the validity of the certificates. It is assumed that a regular

principal playing the role of the authority will respond only to certificates it has created

and will respond only with accurate assessments of presented certificates.

The following procedure uses authentication tests as a guide to protocol design

(29). To satisfy the security goals of the CCV protocol, the solicitor provides an

incoming test for the authority to validate. The easiest method of supplying a test is to

provide a certificate verifiable by the authority along with a nonce Ns to be returned

signed with the authority’s private key. If the set of keys used in CCV is not known to

the penetrator and the incoming test is returned then, this test verifies the certificate. By

Theorem 2 it is deduced that only a regular participant could have returned a signed

certificate validation. Based on the assumed behavior of regular principals, only a

certificate authority would sign and return such a value. Furthermore, the only certificate

authority with the nonce Ns and access to the private key corresponding to the certificate

being validated is the principal acting as the authority. Therefore, the certificate is

validated by the authority and the solicitor can continue with the remaining certificates

40

until the chain is completely verified. The strand space representation of the CCV

protocol is depicted in Figure 5 and the principal traces are in Table 8.

Figure 5 Certificate Chain Validation Protocol

Table 8 Certificate Chain Validation Protocol Principals
Principal Signature Strand Trace

Solicitor[NS kc[]] + NS kc[],- [NS kc[]]ka

Authority[NS kc[]] − NS kc[],+ [NS kc[]]ka

4.3 TLS Strand Space Analysis

Analysis of the TLS strand space proceeds as follows. Strand space proofs are

applied to the base protocols of TLS in isolation to prove their security properties. Next,

the sub-protocols operating under the base model are proven to have protocol

independence. This allows the conclusion that all security properties of the TLS protocol

are maintained even when operating with the CCV and Resume Session protocols.

The theorems below prove authentication for the TLS base protocols, Server

Authentication Protocol and Server & Client Authentication protocol. All of the

following proofs assume the conditions listed in Table 9.

41

Table 9 Strand space assumptions

A bundle over the TLS strand space

Signed messages and encryption form a disjoint set to the set of keys used in the
protocol

The set of keys known to the penetrator KP is disjoint from the set of keys K

The set of penetrator known DH values is disjoint from those used in the protocol

Hashing functions are chosen such that they are computationally infeasible to find
two distinct inputs which hash to a common value and if given a hash value, it is
similarly infeasible to predict the inputs (30)

The Diffie-Hellman problem is hard

 Theorem 1 Origination of Cryptographic Terms

If k ∈ K, and for all nodes in , k is never a sub-term of that node, then any term

h ∈ A signed or encrypted with k must originate on a regular strand.

Proof: If {h}k or [h]k originate on an adversary strand, they must originate on

either an E or σ strand, as they are the only strands that create new cryptographic terms.

For these strands to do this, k ∈ KP. However, this contradicts the assumption that KP is

disjoint from the set K.

Theorem 2 Signature Origination

If k ∈ K, and for all nodes in , k is never a sub-term of that node, then for any

[h]k ∈ A, if [h]k originates on any node then there is exactly one regular principal that

created that value, and furthermore the principal associated with the originating strand

corresponds to the public key used to read h.

Proof: Based on Theorem 1, [h]k must originate on a regular strand. Furthermore,

only regular strands have access to their own private keys. Thus, since each principal is

42

represented uniquely by the inverse of their private key, any term signed is guaranteed to

come from exactly one principal strand in the strand space.

4.3.1 Isolated TLS.

Theorem 3 SAP Authentication

Let be a bundle consisting of SAP Client, SAP Server, and penetrator strands.

Assume that k′ is not known to the penetrator. Then, if contains some strand Client[Tc,

Sc, Ts, Ss, ks[], ds, dc] then must also contain a strand Server[Tc, Sc, Ts, Ss, ks[], ds, dc]

with a height of four whose identity is associated with the public key ks. Furthermore, the

server’s actions are explicitly in response to the client’s and all messages of the protocol

are received un-altered.

Proof: The second message of the protocol contains a signed DH constructor.

Based on Theorem 2, the reception of this term by the client assures the client that this

DH constructor was created by the server whose public key is ks. Knowing that this was

created by that particular server, however, is not sufficient: it must also be proven that the

message was produced with the intent to continue this particular run of the protocol. This

is accomplished with an authentication test.

The edge connecting n2 and n3 of the client strand is an outgoing test for the value

of the End[] function, N0. The test component for this authentication test is thus {N0}k′.

Since the DH problem is hard, the only two principals capable of creating the key k′ are

those participating in the exchange. Furthermore, because N0 is an ingredient of k′, the

only two principals capable of creating N0, are also those participating in the exchange.

Since regular principals act according to the protocol and according to a regular protocol

43

run, N0 is only contained in this encrypted message. Therefore, it can be deduced that N0

uniquely originates at node n3 of the client strand.

Additionally, the test component {N0}k′ never appears as a proper sub-term of any

regular component. Assume for a moment that {N0}k′ is a proper sub-term of test

components which use it as an ingredient. As a sub-term, {N0}k′ is obtainable through

some combination of decryption, separation, joining or concatenation. In the SAP

protocol, the only use of {N0}k′ is as an ingredient to the hash functions. Thus, to obtain

this component, the inverse of the End[] function must be calculated. However, this

contradicts the assumption that the hash functions used are probabilistically unpredictable

and irreversible. Therefore, {N0}k′ is not a proper sub-term of any node in the bundle.

To fulfill the outgoing test, the server must decipher the message and return N0 in

a context outside of the encryption it was received in, i.e. the server must provide a

transforming edge on the test component. This is accomplished in message four sent by

the server between nodes n3 and n4. The new context is provided by the End[] function

result N1. Using N0 as an ingredient for N1, it is presented in a new context only

producible by principals who know the key k′. By returning N1, the server proves that he

has deciphered the message and created a response to the test component recently.

To review, the original test component of message three is never the sub-term of a

previous node, its sub-terms uniquely originate on the node sending it and the sub-term

N0 is returned in a new context outside of the sent component. Therefore, this component

qualifies as a test component, nodes n3 to n4 represent an outgoing test and thus the client

authenticates the server as not only the server associated with the key ks, but also the

other participant in this particular protocol execution.

44

Furthermore, since regular participants only act according to protocol

specifications, the only server node that produces a message of this composition is n4.

Therefore the server strand must have a height of at least four. Additionally, because the

history array used to build N1 includes all previously sent messages and is built with

secret values only known by the participants of this protocol, the client is provided with

the guarantee that all messages sent and received have not been altered by a third party.

If the messages where altered, the verification of hash values would reveal this and the

protocol would not continue.

Thus, the SAP protocol assures the client of three things: first, the server’s

identity is that associated with ks; second, that server is executing this protocol in

response to the client’s requests and not some other run of the protocol; and third, all four

messages are received un-altered by any third party.

Theorem 4 SCAP Server Authentication

Let be a bundle consisting of SCAP Client, SCAP Server, and penetrator

strands. Then, if contains some strand Client[Tc, Sc, Ts, Ss, ks[], ds, kc[], dc] then

must also contain a strand Server[Tc, Sc, Ts, Ss, ks[], kc[], ds, dc] with a height of four

whose identity is associated with the public key ks. Furthermore, the server’s actions are

explicitly in response to the client’s and all messages of the protocol are received un-

altered.

 Proof: The proof for this theorem is analogous to that of Theorem 3. The only

cryptographic difference in the SCAP and SAP protocols is that the DH constructor

provided by the client is now a signed term. However, that signed term only becomes

important when proving client authentication.

45

 To begin, the signed DH constructor supplied by the server provides the client with

sufficient proof that the sender of that term was the server associated with the key ks via

Theorem 2.

Similarly, {N0}k′ provides an authentication test for the server. Through the same

logic as before, this component is never the sub-term of a previous node, its sub-terms

uniquely originate on the node sending it and the sub-term N0 is returned in a new

context outside the sent component. Consequently, the client can authenticate the server

as participating in this particular execution of the protocol and as the particular server

associated with ks.

Once again the composition of the message digest provides a guarantee of

message agreement. Thus, the SCAP protocol assures the client that the server is ks, is

running this protocol in response to the client’s messages, and all messages have been

received un-altered.

Because the SCAP protocol is designed to provide mutual authentication it is also

necessary to prove that SCAP authenticates the existence of a particular client given a

server strand.

Theorem 5 SCAP Client Authentication

Let be a bundle consisting of SCAP Client, SCAP Server and penetrator

strands. Assume that k′ is not known to the penetrator. Then, if contains some strand

Server[Tc, Sc, Ts, Ss, ks[], kc[], ds, dc], then must also contain a strand Client[Tc, Sc,

Ts, Ss, ks[], ds, kc[], dc] of height at least three.

Proof: Theorem 2 allows the server to identify the DH constructor supplied in

message three as an incoming value provided at some previous time by the client

46

associated with the public key kc. However, authentication once again must be deduced

from an authentication test via a test component.

The authentication takes place between nodes n2 and n3 of the server strand and is

an incoming test. In this case the test value a is message digest N0.

The test value N0 encrypted with k′ is the test component that fulfills the incoming

authentication test. To qualify as a test component, {N0}k′ must not be the proper sub-

term of any other term in the bundle and must contain a uniquely originating value as a

sub-term. Using the same logic as in Theorems 3 and 4 this component is not a proper

sub-term of any term in .

To show that N0 is a uniquely originating value, recall that the ingredients of N0

include the generated secret key k′. Because the DH problem is hard, the only principals

that know this key are the regular principals executing this protocol. Therefore, the

generation of the digest using this key is a unique value. Furthermore, since regular

principals act only according to the protocol standard, through inspection of the strand

trace it can be seen that only the client strand will create the message digest N0. Thus, the

test value N0 is a uniquely originating value in the strand space.

Additionally, for the same reasons as shown in previous theorems, N0 also

provides agreement on all previously sent messages. Thus, the server is assured the client

is that associated with the key kc, is responding to this particular execution of the

protocol, agrees with the first three messages of the SCAP protocol and is of height at

least three.

As an interesting side note, despite the strong agreement on the first three

messages the server has no guarantee the client receives the last message. Because there

47

is no response to the final message, let alone one including a means of authentication, it is

impossible for the server to know if the client received the last message. This, however,

does nothing to weaken the authentication of the previous messages and is more of an

inconvenience peculiar to the sender of the final message of a protocol.

4.3.2 Isolated Resume.

Theorem 6 Resume Server Authentication

Let be a bundle consisting of Resume Session client, server and penetrator

strands in addition to SCAP or SAP strands. If contains some client strand Client[Tc,

Sc, Ts, Ss] then must also contain a strand Server[Tc, Sc, Ts, Ss] of height at least two

that agrees on all messages of a particular SCAP or SAP protocol.

Proof: The edge connecting nodes n1 and n2 acts as an incoming authentication

test to authenticate the server to the client. The test value is the result of the message

digest Nx+1, where x is the number of previously sent message digests from the protocol

session being resumed. The test component for this test is the encrypted portion of

message 2, {Nx+1}k′. To be a test component, it cannot by a proper sub-term of any other

messages in and must contain a value a that uniquely originates on the n1.

Assume {Nx+1}k′ is a proper sub-term of a message in . Through observation it

is clear that this component is not included in any other message other than as an

ingredient. In particular as an ingredient in message digest Nx+2. To extract this from the

digest the DH key k′ must be compromised and the digest must be reversed. However,

this contradicts the assumption that the DH problem is hard and that the hash functions

are irreversible. Thus {Nx+1}k′ is not a proper sub-term of any other messages in .

48

The node n1 does not supply explicitly a uniquely originating value, however, it

does provide a constructor such a value. Message one of the protocol provides an

additional entry to the history[] array used to compose Nx+1. Based on the assumption

that hash functions are unpredictable Nx+1 must be a uniquely originating value.

Therefore, the component {Nx+1}k′ is a test component for the incoming test over

the nodes n1 and n2 of the client strand and nodes n1 and n2 of the server strand are the

transforming edge which satisfy the test. This allows the client to conclude that this

execution of the Resume protocol is in response to the messages the client initiated.

A validated message digest, as discussed in previous theorems, indicates

agreement on all previously sent messages. In this case a message digest will be built

with the messages from a previous SCAP or SAP session. Because both of these

protocols authenticate the server, the successful execution of either reveals to the client

the identity of the server, ks, via Theorem 3 or Theorem 4 respectively.

Thus, given a client strand, there must exist a server strand of at least height two

that is participating in this particular execution of the protocol, is authenticated as the

server corresponding to the public key ks of the resumed session and agrees on all

previously sent messages of the same resumed session.

Theorem 7 Resume Client Authentication.

Let be a bundle consisting of Resume Session client, server and penetrator

strands in addition to either SCAP or SAP strands containing a complete run of the

respective protocol. If contains some server strand Server[Tc, Sc, Ts, Ss] then must

also contain some strand Client[Tc, Sc, Ts, Ss] that agrees on all messages of resumed

protocol.

49

Proof: This proof is very similar to that of Theorem 3. The test being

accomplished is an outgoing test over the nodes n2 and n3. The test value is Nx+1 and the

test component is {Nx+1}k′, where x is the number of previously sent message digests

from the protocol session being resumed. Based on the same arguments for the message

digest in Theorem 3, this value is not a proper sub-term and contains a uniquely

originating value in the digest Nx+1.

 The corresponding client strand must extract this value and return it in a new

context via a transforming edge. This is done in message three between nodes n2 and n3

of the client strand. The new context is provided by the digest Nx+2. Because this value

uses the test value as an ingredient and is encrypted with the shared secret key k′, the

client proves that he has deciphered the message and created an appropriate response to

the test. Therefore, this component authenticates the client as the principal executing the

other half of this particular protocol run.

The identity of the client, however, is a more delicate matter. Through inspection

of the history array used in constructing message digests, the server can search for a

client supplied DH constructor. If the included strands are SCAP strands, then the DH

constructor will be signed with the key kc. In this case, the server can authenticate not

only that the client is running this particular session of the protocol but also that the

client’s identity is that associated with kc. On the other hand, if the strands are a SAP

execution, then the DH constructor is not signed and the best the server can do is to

guarantee that this execution is being accomplished with the same client as the resumed

protocol, but cannot authenticate the identity of that client.

50

4.3.3 Isolated CCV.

Theorem 8 CCV Authentication.

Let be a bundle consisting of CCV Solicitor, CCV Authority and penetrator

strands then, if contains some strand Solicitor[NS kc[]], then must also contain a

strand Authority [NS kc[]] and the assessment of the link of the certificate chain, kc[], is

accurate.

Proof: This protocol was built with an authentication test in mind and thus is a

relatively straight forward proof. The test value is the uniquely originating nonce Ns

supplied in message one of the protocol. It is assumed that the solicitor can provide an

unpredictable nonce Ns such that the value is uniquely originating. The authentication

test is an incoming test over the edges n1 and n2. The test component returned is the

entire second message of the protocol {Nskc[]}ka. Furthermore, due to the simplicity of

the protocol from inspection it can be seen that no other messages contain the component

{Nskc[]}ka as a sub-term. Thus, the component qualifies as a test component because it

includes a uniquely originating value and is not a sub-term of any other message in .

In order to complete this incoming test, the authority must provide a transforming

edge. The new value Ns is received in the clear-text of message one. It is placed in a new

cryptographic context within the test component thus satisfying the transforming edge

and completing the authentication test. Theorem 2 applied to message two identifies the

authority as the particular principal associated with ka.

Therefore, the solicitor, through an incoming test, authenticates the authority as

running this protocol in response to the protocol initiation by the solicitor and the

authority is the particular principal associated with the key ka. Recall the assumption

51

originally made in Section 4.2.1 that a regular principal playing the role of the authority

will respond only to certificates it has created and will respond only with accurate

assessments of presented certificates. Based on this assumption, the assessment of this

link of the certificate chain is valid. Thus, given a solicitor strand executing the CCV

protocol, there exists an authority ka that corresponds with that particular execution of the

protocol and provides a valid certificate assessment.

4.4 TLS Protocol Independence

To prove protocol independence the base and the sub-protocols must be compared

against the properties required for disjoint encryption. The two base protocols will be the

SAP and the SCAP protocols. To prove that each protocol execution is independent, it is

required to prove that the two base protocols are independent of each sub-protocol. Once

these relationships are proven to be independent, it can be concluded that the TLS

protocol running CCV and Resume protocols have the same security properties as the

TLS protocol running in isolation.

4.4.1 SAP, Resume & CCV.

To prove that the SAP-Resume-CCV strand space retains the security properties

of the SAP strand space, it must be shown that all secondary strands exhibit disjoint

encryption with SAP. The set of secondary strands Σ2 consists of a proper subset of the

strands from the Resume (Σres) and CCV (Σccv) protocols.

To begin, the CCV protocol was designed to provide the needed security

assurances while avoiding potential problems with the SAP protocol. Consequently, it

shares no terms either as sub-terms or terms with the same signature as those in the SAP

52

protocol. Similarly, it does not originate any texts or keys vital to the privacy of the

primary protocol. That is to say, there are no encrypted terms t such that t term(n1) and

t term(n2), for n1∈Σ1 and n2∈Σccv. The same is true for disjoint inbound encryption.

Therefore, the CCV exhibits disjoint encryption with the SAP.

To complete the proof, the set of strands of the Resume Session protocol must

also be proven to be disjoint with the SAP. No new components of the Resume Session

protocol contain, as sub-terms, private values from the SAP protocol. The construction

of the message digest uses private values, however, they are not retrievable from the

components, and thus not considered sub-terms. Therefore, there is no positive node in

Σres that uses private values as sub-term of new components, therefore, the Resume

Session protocol exhibits disjoint outbound encryption with respect to SAP.

For disjoint inbound encryption there cannot be a node such that a private

encryption occurs as a new component on Σres that also occurs on the SAP. The only

encrypted component generated by the Resume Session protocol is {End[server]}k′.

Although this component matches the signature of components found in the primary

protocol, i.e. in messages three and four, the nature of the End function means that this is

a new component. That is to say that this is a uniquely originating component that is

distinguishable from all other occurrences of the message {End[server]}k′.

Consequently, the Resume Session protocol exhibits disjoint outbound encryption.

Since the Resume Session protocol exhibits both inbound and outbound disjoint

encryption it also exhibits disjoint encryption. Furthermore because all subsets of Σ2

exhibit disjoint encryption with SAP, Σ2 exhibits disjoint encryption with SAP.

53

Finally, since no atomic text or key originates on secondary nodes of the mixed

strand space, there is an equivalent strand space which has an arbitrary amount of M and

K strands. Since these values are incapable of interacting with the Σ2, the strand space is

said to be full. Therefore, all protocols of the mixed SAP strand space are considered to

be independent. Thus, all properties of these protocols are preserved when executing the

SAP with Resume Session and CCV as sub-protocols.

4.4.2 SCAP, Resume & CCV.

The proof of protocol independence for the SCAP is identical to that of the SAP

proof. This is provable by identifying the difference in terms of the SAP and SCAP

protocols and showing that these provide no new terms that interfere with disjoint

encryption in the sub-protocols.

Table 10 Term differences in TLS base protocols
New Term in SCAP Corresponding term in SAP

Tcert -

kc[] -

[dc]kc dc

The terms which differ in the SCAP and the SCAP are identified in Table 10.

None of these terms are secret values and they share no common signatures with the sub-

protocols Resume Session and CCV. Therefore, Σ2 exhibits disjoint outbound

encryption. Similarly, since none of these are private encryptions, there cannot be a new

component in Σ2 that produces a private encryption that is in this set. Therefore Σ2 also

exhibits disjoint inbound encryption. Furthermore, the set of secondary strands Σ2

54

exhibits disjoint encryption to the SCAP. The same reasoning as above allows this mixed

strand space to be considered full. Finally, a full strand space with disjoint encryption

exhibits protocol independence. Consequently, the SCAP protocol is independent of the

Resume Session and CCV protocols and thus the mixed strand space that contains all of

these protocols exhibits the same properties as any of the protocols in isolation.

55

V. Final Words

5.1 Summary

The goal of this work was to assemble a method to integrate the Simple Public

Key Infrastructure (SPKI) into an application and provide security analysis of the result.

Strand space authentication tests were used to provide a guide to SPKI application

design. The authentication tests supplied a well-grounded formal method of protocol

generation and analysis. The result was that the security properties of the new protocol

designed were direct implications of the security goals.

Overall, strand space was found to be an excellent tool for SPKI analysis because

it provided an explicit model of PKI protocol environments as well as a means for

analyzing the protocols interacting with one another. In unison, these properties are an

ideal model for SPKI protocol design and analysis.

As a demonstration of the assembled model, SPKI was integrated into the

Transport Layer Security protocol. The TLS protocol was chosen due to its popularity,

its security goals, and its reliance on a PKI. The two TLS protocols examined where the

Server Authentication Protocol and the Server & Client Authentication protocol. As

anticipated, each was proven in isolation to provide authentication to their respective

principals.

The strand space based method of authentication tests as a means of protocol

design furthered the example by providing a way to integrate SPKI functionality into the

56

TLS protocol. Authentication tests were used to create the Certificate Chain Validation

protocol used to validate certificates being used by the TLS protocol.

Furthermore, utilizing the ability of strand space to analyze multiple protocols

operating in the same environment TLS was proven to be independent of its sub-

protocols. This then led to the proofs that TLS running its own Session Resume protocol

and the newly created CCV protocol has the same security properties as TLS operating in

isolation.

5.2 Future Work

5.2.1 Security Policy Design.

A key feature of SPKI is its ability to delegate authority for access control,

certificate distribution or any other definable authorization. Due to this flexibility, there

is the additional concern of security policy design. When is it reasonable to delegate an

authorization? Furthermore, is there an ideal method for developing the hierarchy of

delegation? Perhaps an inductive proof method can be derived to establish a logic for

building the desired hierarchy or possibly a means of recursively building and checking

the tree during policy design and certificate distribution.

5.2.3 Performance Based Analysis.

Using SPKI in place of other public key technologies may result in additional

overhead. One such overhead could be excessive network traffic. In the TLS example

explored above, execution of the certificate chain validation protocol will result in

network traffic. If each principal of a network is required to check a dozen certificates

57

per interaction the network traffic may build. A model of this traffic and the demands it

places on a network could be a valid topic of future SPKI research.

5.2.4 Hardware Demands.

Since the SPKI standard allows for principals to create their own keys, will this

place further demands on the hardware necessary for SPKI applications, and if so to what

extent? If a central key authority is to issue keys and certificates, what will be the

network congestion as a result of requests to verify generated certificates or keys?

5.2 Conclusions

SPKI is an intriguing and flexible standard that provides an excellent framework

for PKC. Due to the brevity of its specification, a good deal of care must be taken in

application integration. However, if attention is paid to an application’s desired security

goals SPKI can offer a provable and flexible solution.

The strand space theory has proven to be an invaluable tool both in the analysis of

protocols and their design. Strand space graphs are a clear and concise means of

representing both simple and obscure protocols. Furthermore, the inductive nature of

strand space proofs provide not only analysis of protocol correctness, but also reasoning

why a protocol may fail. This concept can then be carried into the analysis and

construction of new protocols to avoid the same security problems in the future.

58

Appendix A: Strand Space Protocol Example

The following is the strand space representation of the Simple Protocol. The

Simple Protocol consists of two brothers, Cyril and Dmitri passing information to and

from one another. Dmitri begins by asking Cyril to send him the location of their secret

hideout (M1). Cyril responds by encrypting a message detailing where the hideout is

using Dmitri’s public key,{M2}KD. Dmitri in turn encrypts a new message telling Cyril

what to bring to the hideout at their next meeting {M3}KC. The graphical representation

of this protocol in strand space is in Figure 6.

Figure 6 the Simple Protocol

Nodes n1 and m1 both share the same term M1. However, n1 is a positive (sending) node

and m1 is a negative (receiving) node. The vertical path from n1 to n3 represents the

strand of Dmitri. The edge between n2 and n3 represents Dmitri deciphering Cyril’s

encryption extracting the information and enciphering his own message to send off. The

actual act of sending the messages is captures along the edges between the n and m

nodes.

59

Bibliography

1 Diffie, W. and M. E. Hellman “Multiuser Cryptographic Techniques,” Proceedings of
AFIPS National Computer Conference. 109-112. Montvale, NJ: AFIPS Press, 1976.

2 Thayer, Javier, Jonathan Herzog and Joshua Guttman. “Strand Spaces: Proving

Security Protocols Correct,” The Journal of Computer Security, 7: 191-230 (1999).

3 Arkin, Brad, Scott Stender and Gary McGraw. “Building Security in: Software
Penetration Testing,” IEEE Computer Society Security and Privacy Magazine, Vol 3
No. 1, 84-87 (January-February 2005).

4 Dam, Kenneth W and Herbert S. Lin. Cryptography’s Role in Securing the Information
Society. Washington D.C.: National Academy Press, 1996.

5 Asokan, N., Niemi Valterri and Kaisa Nyberg. Man-in-the-middle in tunneled
authentication protocols: Technical Report 2002. Finland: Nokia Research Center, 11
November 2002.

6 Shoup, Victor A Computational Introduction to Number Theory and Algebra

Cambridge University Press, 2005.

7 Benantar, M. “The Internet Public Key Infrastructure,” IBM Systems Journal, Vol 40:
Num 3, 2001.

8 Ellison, Carl. “SPKI Requirements.” Request for Comments 2692 to Internet

Engineering Task Force, Network Working Group, Sept 1999.

9 Housley, R, W. Ford, W. Polk and D. Solo. “Internet X.509 Public Key Infrastructure
Certificate and CRL Profile.” Request for Comments 2459 to Internet Engineering
Task Force, Network Working Group, Jan 1999.

10 Gerck, E. “Overview of Certification Systems: X.509, CA, PGP and SKIP,”
Proceedings of Black Hat Briefings 1999, July 1999.

11 Ellison, Carl, B. Frantz, B Lampson, R. Rivest, B. Thomas and T. Ylonen. “SPKI
Certificate Theory.” Request for Comments 2693 to Internet Engineering Task Force,
Network Working Group, Sept 1999.

12 Clarke, Dwain. SPKI/SDSI HTTP Server/Certificate Chain Validation in SPKI/SDSI.
MS thesis Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Cambridge MA, September 2001.

60

13 Clarke, Dwain, J-E. Elien, C. Ellison, M. Fredette, A. Morcos, R. Rivest. “Certificate
chain Validation in SPKI/SDSI.” Journal of Computer Security. 9:4 285-322 (July
2001).

14 Elien, Jean-Emile. Certificate Validation Using SPKI/SDSI 2.0 Certificates. MS thesis
Department of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, Cambridge MA, May 1998.

15 Dolev D and A.C. Yao, "On the security of public key protocols," IEEE Transactions
on Information Theory, Vol. IT-29, No. 2:198-208 (March 1983).

16 Clark, John and Jeremy Jacob. A Survey of Authentication Protocol Literature:

Version 1.0. Unpublished Technical Report, Department of Computer Science,
University of York, UK, Nov 1997. Available at the URL:
www-users.cs.york.ac.uk/~jac/papers/drareviewps.ps.

17 Herzog, Jonathan. “The Diffie-Hellman Key Agreement Scheme in the Strand-Space

model,” Proceedings of the 16th IEEE Computer Security Foundations Workshop.
IEEE CS Press, June 2003.

18 Guttman, Joshua and Javier Thayer. “Authentication Tests,” Proceedings of the 2000
IEEE Symposium on Security and Privacy, Oakland, CA, May 2000.

19 Ron Rivest. “The MD5 Message-Digest Algorithm.” Request for Comments 1321 to

Internet Engineering Task Force, Network Working Group. April 1992.

20 National Institute of Standards and Technology. Secure Hash Standard. PUB 180-1.
Federal Information Processing Standards Publications, May 1993.

21 Guttman, Joshua and Javier Thayer. “Protocol Independence through Disjoint
Encryption” Proceedings of the 13th IEEE Computer Security Foundations Workshop.
Cambridge MA, July 2000.

22 Portmann, Marius and Aruna Seneviratne. “Selective Security for TLS,” Proceedings
of the Ninth IEEE International Conference on Networks. IEEE CS Press, October
2001.

23 Dierks, T. and C. Allen, “The TLS Protocol Version 1.0.” Request for Comments
2246 to Internet Engineering Task Force, Network Working Group, Jan 1999.

61

24 Yasinsac, Alec and Justin Childs. “Analyzing Internet Security Protocols,”
Proceedings of the Sixth IEEE International Symposium on High Assurance Systems
Engineering, October 2001.

25 Kaminsky, Dan. “MD5 To Be Considered Harmful Someday.” Unpublished Report
Avaya Inc., 6 December 2004.

26 Wang, Xiaoyun, Dengguo Feng, Xuejia Lai and Hongbo Yu, Collisions for hash
functions md4, md5, HAVAL-128 and RIPEMD. School of Mathematics and System
Science, Shandong University China, 17 August 2004.

27 Maywah, Andrew. An Implementation of a Secure Web Client Using SPKI/SDSI
Certificates. MS thesis Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge MA, May 2000.

28 Thayer, Javier, Jonathan Herzog and Joshua Guttman. “Mixed Strand Spaces,”
Proceedings of the 1999 IEEE Computer Security Foundations Workshop. Washington
D.C, IEEE CS 1999.

29 Guttman, Joshua “Security Protocol Design via Authentication Tests,” Proceedings of
the Computer Security Foundations Workshop. Cape Breton Nova Scotia, June 2002.

30 Menezes, Alfred J. and others. Handbook of Applied Cryptography. New York: CRC
Press, 1997.

62

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to an penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

21-03-2005
2. REPORT TYPE

Master’s Thesis
3. DATES COVERED (From – To)

Aug 2003 – Mar 2005
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

Simple Public Key Infrastructure Analysis Protocol Analysis
and Design 5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Vidergar, Alexander G., First Lieutenant, USAF

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way, Building 641
 WPAFB OH 45433-8865

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GCE/ENG/05-07

10. SPONSOR/MONITOR’S
ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 Mr. Sylvan Pinsky
 pinsky@thematrix.ncsc.mil
 National Security Agency (NSA/C43)
 Fort Meade, MD 2755-6000 Phone: 410-854-6191

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT Secure electronic communication is based on secrecy, authentication and authorization. One means of
assuring a communication has these properties is to use Public Key Cryptography (PKC). The framework consisting of standards,
protocols and instructions that make PKC usable in communication applications is called a Public Key Infrastructure (PKI). This
thesis aims at proving the applicability of the Simple Public Key Infrastructure (SPKI) as a means of PKC.

The strand space approach of Guttman and Thayer is used to provide an appropriate model for analysis. A Diffie-
Hellman strand space model is combined with mixed strand space proof methods for proving the correctness of multiple protocols
operating in the same context. The result is the public key mixed strand space model. This model is ideal for the analysis of
SPKI applications operating as sub-protocols of an implementing application.

This thesis then models the popular Internet Transport Layer Security (TLS) protocol as a public key mixed strand
space model. The model includes the integration of SPKI certificates. To accommodate the functionality of SPKI, a new
protocol is designed for certificate validation, the Certificate Chain Validation Protocol (CCV). The CCV protocol operates as a
sub-protocol to TLS and provides online certificate validation.
 The security of the TLS protocol integrated with SPKI certificates and sub-protocols is then analyzed to prove its security
properties. The results show that the modified TLS protocol exhibits the same security guarantees in isolation as it does when
executing its own sub-protocols and the SPKI Certificate Chain Validation protocol
15. SUBJECT TERMS
strand space, authentication tests, SPKI, SDSI, TLS, SSL, public key infrastructure

16. SECURITY CLASSIFICATION
OF:

19a. NAME OF RESPONSIBLE PERSON
Graham, Robert, Maj, USAF

a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

17. LIMITATION
OF
 ABSTRACT

UU

18.
NUMBER
 OF
 PAGES

62

19b. TELEPHONE NUMBER (Include area code)
(937) 255-3636, ext 4715
(Robert.graham@afit.edu)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	Introduction
	Public Key Cryptography and Protocol Analysis
	2.1 Security & Cryptography
	2.2 Public Key Infrastructure
	2.2.1 X.509.
	2.2.2 SPKI/SDSI.

	2.3 Protocol Analysis
	2.3.1 Strand Space.
	2.3.1.1 Authentication Tests
	2.3.1.2 Penetrator Strands

	Analysis Methodology
	3.1 The PKI Strand Space
	3.1.1 PKI Penetrator.

	3.3 Protocol Independence though Disjoint Encryption

	An Analysis of the TLS Protocol
	4.1 Transport Layer Security Protocol
	4.1.1 TLS: Server Authentication Protocol.
	4.1.2 TLS: Server & Client Authentication Protocol.
	4.1.3 TLS: Resume Session Protocol.

	4.2 SPKI Integration into TLS
	4.2.1 Certificate Chain Validation Protocol Design.

	4.3 TLS Strand Space Analysis
	4.3.1 Isolated TLS.
	4.3.2 Isolated Resume.
	4.3.3 Isolated CCV.

	4.4 TLS Protocol Independence
	4.4.1 SAP, Resume & CCV.
	4.4.2 SCAP, Resume & CCV.

	Final Words
	5.1 Summary
	5.2 Future Work
	5.2.1 Security Policy Design.
	5.2.3 Performance Based Analysis.
	5.2.4 Hardware Demands.

	5.2 Conclusions

